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RESEARCH OBJECTIVES
The primary research objective of this project is to develop and evaluate methods

of measuring the parameters of single evoked potential (EP) waveforms. Currently the
research falls into the following two areas.

a. Investigation of pattern recognition procedures for discriminating among various
evoked potential waveforms.

b. Investigation of preprocessing and filtering techniques to provide improved

waveform estimation.

STATUS OF RFSEARCH EFFORTS

Significant results have been obtained in the areas of research relating to this pro-
ject. These are briefly described in the following paragraphs and are further described
in the publications resulting from the research.

Feature Selection for Automatic C(inssfleetion. It has been shown by simulation

and experiment that it is possible to effectively classify EP waveforms into categories
corresponding to the stimuli that produced them. Two problems associated with this

procedure are selection of the best features from the data set to use in making the

classification and the errors that result from interference due to the ongoing EEG.
Both of these problems have been addressed as part of this research project and pro-

cedures developed to mitigate their effects on system performance.

*: In the classification procedures being utilized here the features upon which a deci-

sion is made are the waveform amplitudes at regularly spaced sampling intervals.

These samples are taken from a segment of the EP waveform immediately following

stimulation and extending up to as much as 500 ms. The sampling interval is typically

4 to 20 ms. It is a general property of classification procedures of this type that

increasing the number of features employed in the classification improves performance

4 "up to a certain (relatively small) number of features after which performance begins to
decrease. The problem is to select the best subset of features from the complete set.

Two methods that have been widely used for feature selection are Forward

Sequential Feature Selection (FSFS) and Stepwise Linear Diseriminant Analysis

(SLDA). The FSFS algorithm performs a classification of the training set using each

fepture individually in a sequential manner. The feature yielding the lowest error rate

of. classification is then selected. The next step is to combine this first feature with

each of the other features and reclassify the training set to pick the pair of features

that gives the lowest error rate. This process is continued until no further improve-

ments in accuracy are obtained by adding additional features or until the desired
number of features .Th is not an optimum procedure because there
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iW no basis for amuming that because one feature works the best alone that that feature
paired with any other feature would be the best two features for classification and the
same thing applies for larger numbers of features.

The SLDA algorithm proceeds in much the same manner as the FSFS algorithm
except that the criterion used to select the best feature at each step is based upon a
Statistical test rather than a computed error rate. The test used is a one way analysis
of variance. The SLDA also tests for loss of significance of any of the features already
entered and thus can remove variables or features that have been previously selected.
However, in the applications that we have made of this procedure, previously selected
variables have not been removed by the procedure. This procedure is also a nonop-
timum procedure and is only applicable to linear discriminant analysis.

One method of obtaining an optimum feature subset is to test all possible subsets
for their performance in a classifier. The difficulty with this procedure is that a great
amount of computation is required in order to test every combination of features that is
available from a large set. For example, selecting five features out of a set of 27 would
require the design and testing of 100,000 different classifiers. However, it was found

* that by writing all computer subroutines in assembly language and by calculating the

discriminate function using the algorithm for regression by "leaps and bounds"* the
computation could be made feasible for linear discriminant analysis. Using this pro-
cedure it is then possible to compute the optimum feature set and to compare perfor-
mance with the optimum feature set with those features selected by the FSFS and
SLDA algorithms. Also some additional information can be obtained by examining
which features are selected by each procedure to see what commonality exists among
them.

The classification performance using features selected by each of the three tech-
-, niques was measured using both artificial simulation data and using real evoked poten-
- tial data. The simulated data was generated by adding known deterministic signals to

random noise sequences. The noise was generated as a Markov process having various
*half-power bandwidths. The signals corresponded to average evoked potential

waveforms measured experimentally using the unexpected event paradigm in which a
letter regularly appears but is inverted in a random manner approximately 10% of the
time. An experiment of this type is the source of the real data that is considered subse.
quently. Tests were made using noise of various bandwidths ranging from 4 to 25 hertz
and evaluation was made by training and testing on the same data set. Eighty samples
hknteach class were used in the simulation. Three linear classifiers using features selected
by FSFS, SLDA, and Exhaustive Search Feature Selection (ESFS) and a quadratic
elassfier using FSFS were evaluated.

oFunivsl, G. M. sad Wilon, R. W., "Reessiron by Leaps ad Bounds," TecAnemefric,
Vol. 16, 1974.
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Table I shows the results for noise bandwidths of 8 hertz and for signal-to-noise
* ratios of -3dB, -6dB and -9dB. For this case the noise bandwidths were the same for

the two classes and so their covariance matrices were also identical for the two classes.
Tfble 2 shows the results for the case when the eovarianee matrices of the noise are
different for the two classes as a result of using a noise bandwidth of 8 hertz for one

-class and 14 hertz for the other class. It is seen from Table 2 that ESFS has the same
kind of improvement in performance for the case of unequal covariance matrices as it
did for equal eovarianee matrices for the two classes. The FSFS procedure with a qua-
dratic discriminant function seems to give somewhat better performance for the
unequal covariance matrices than do the linear discriminant functions.

A comparison of the several feature selection and classification procedures using
measured evoked potentials was also carried out. Data was collected from four human
subjects for the unexpected event paradigm. A sequence of letter v's was shown to the
subj.ect with a random occurrence of an inverted v occurring 10% of the time. For
each subject three electrode sites were used, Cz, Pz and Oz. Feature selections and
classifications for all electrode sites were then carried out. Table 3 shows the results for
one of the subjects. As in the case of the simulated data the ESFS procedure gave a
modest improvement in classification performance over the other linear methods. How-

. ever, the quadratic discriminant function using FSFS in a number of cases gave better
performance than the ESFS procedure.

In addition to the classification results using the experimental data a record was
also made of the features actually selected by the different procedures. Table 4 shows
the features that were selected at the various steps for the same subject as in Table 3.

* In most instances it was found that the first feature selected was the same by all
methods but from then on there was often divergence particularly with the ESFS algo-
rithm. Oftentimes the initial feature chosen or early feature sets are not contained in
the final feature sets. An example of this is shown in Table 4 for electrode Cz, where

* none of the features selected in Steps 1 and 2 were included in the feature set obtained
at Step 5.

The general conclusion of these tests is that the exhaustive search feature selection
procedure gives a modest improvement in performance of the classifier for both the
simulated and experimental data. In almost all eases features selected at the various
steps of ESFS did not contain all the features selected in previous steps. Features were
constantly replaced by new ones when moving to the next step. This was never the
fase for SLDA even though SLDA contained the capability of removing features at
each step.

)i
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Table 1

.Artificial. equal covar. Data sets 59 wa 5% -3d S/N.

Noise Step Ave rate Classification Rate
Bandwdth Number ' A

1 7 50 72.50X 5.00% 7&60X

- -BWi 82z _. .81. . 76.25X 0.0M. ?&"m

912 8hz _______ 6.53 60503 61O753
4 0&"X5 03-75% 96.2. N9s

_11_,_625X 8.7-5X 85.00XCL.E

Artificial. equal covw. Data sets 5e and 5u. -6dB S/N.

Noise Step Average Classification, tjt@
Bandwidth Number uadratic A

I 7 000 X 70.02 80.00S 10.002

a125 PIO 12X6.50X &5
tI 8hz _ -3~ Th&8ODIIX 71.Sex 70.0M ".5oxS

BW2 8hz ____OO _ " 1OX .

4 7251 7 6.1 W.SO OI.622

Artificial, equal cover. Data sets 5e and 5u. -B S/N.

Noise Step Aver.e Classification Rate
Bandwidth Number _ _

I4 6&75X ~ .S 5625X 0753

It8h 61.7S2 U.72 00.00X 06.75X

3 7V0T.003 ".25x 71602

4 11.52 nam 6752 75.00

• 7__5__ 7t1.ox 6.75] "6.00__________ ~ 3.50 -



Table 2

*ArtificiaL, unequal covr. Date sets Re and &u -345 S/N.
Noise stop Average Ciauusicstion Rate -

Bandwidth Number .W L.U
1 71.253 7.33 70.00 71.=6

wi5z03 S71.603W 77.50 76.7

DW2 14hz 6.0 LO 0736.5

4 67.503 WA.80 as=50 S7.10

L____ 5 66.75X G7.502 3.25 66765

ArtificiaL unequal covar. Data sets So and Bu. -680 SAL.

Noise stop Aeagfe Classification ao
Baddth Nube _vil

A 66L75X 66.753 3.25 3.75

B-l MIS mh 72.16 76.803 70.009 7LISM05

OW2 14hz W=_____ 70603 755 77.805

4 W737&=33 Y7"X KO=

Atificial unequal covar. Data sets Ze and ft -9435S/N.

Noise step A ae Clagsfidation te -

Badit Number M~ina MA MM
I 67.803 67.50X 60.00X 47.605

312 14hz 66.6 115 0057.3

4 70.00 7103326 5.
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Table 3

.. Abal data. error rate. Subject 3. Electrode Oz.

Data Step Aweraae Classification Rate
Structure lumberie uag ie. .IWL I

I 75.00X 76.75% 7&0= 7&00X

e~etedU 50% "6.25% W2.50 W50%
nexpeted-

unxece 7.5o= 67.50X 8&.75X 8.Wo5

event ..... sox _ _ ... MAWI_".

P Real data. error rate. Subject 3. Electrode Pz.

Data Step Average Classification Rate
Structure Number .IVln FSF (odratic) SIDA J

I 76.25X 75.00 70.25X "6.25X

* expected- a 63.75X 08.75 , @&7 6U75%

unexpected $ K.25% 6.25X 6M V.N0

event 4 5.25% 30.003 U53 8&.75

'- Real data, error rate. Subject 3. Electrode C.

Data step Avere' Classification tRat
Structure Number A"(n ( draticD

I 73.75X 73.75X [731 71,753

expected- a , 5.00% 03.75X j0.0= U.003

a 62X A -a o-

unexpected . 5

event 4 .6.25% 87.50X SI5 5790

______ 65.2% so.75X 5flx

2..:. ;. .! l_ O. Y 8J S.0
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Table *

Real data. Subject 3. Electrode Oz.

Step Latency of Feature(s) Selected (miiseon .ds)

-ES

1 5? 76 576 576
__2 5" 196 _ 6 71g6 576196 6toe ?

3 576196216 576196176 5761 9 27 196216576

4 576196215136 58 196 176236 576 1962 2 476 136 196216576

1 5 57196 21613 2W 5 7 196 176 236436 576196276476336 136178196216576

Real data. Subject 3. Electrode Pz.

Step Latency of Feature(s) Selected (milliseconde)
! l FS~inear) FSFS(aud rI;V~LDA 1

1 676 6 576 576
2 576 2W 5 62 576296 296578
3 576296176 556 M 456 576 2N 42 M 476 56

4 576296 176 36 566 296 456476 576 6 476 156 158316336476

5 578 29 170236 55 29646 476 196 57 6647 156378 16 318 390 4766

qeal data. Subject 3. Electrode Cz.

Step ' Latency of Feature(s) Selected (milliseconds)
" I~l linsr) FJ(guadratic1 SLDA MsF '

" 396 576 an

2 56M6"5M6 576296M 59
63 550 M e566156 576 47 1369M 6

4 556 M 13 19 M , 556156 390 57620647376 1 I626456
5 5N62961 Iin6216 2 6 6515639676 576296476 376 6 136M634H576

--• .
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Time-Varying Filter In the measurement and analysis of evoked potentials it is
generally known within what time epoch the signal occurred. However, ofiten the signal
can take a variety of forms through variations in latency amplitude or even occurrence
of particular components in the EP. By incorporating all known apriori information
both deterministic and probabilistic into the processor design it is possible to obtain
• spbstantial improvements in waveform estimation over processors not utilizing this
information. Because of the signal's occurrence in a particular time epoch in combina-
tion with the ongoing EEG the resulting waveform is a sample function of a non-
stationary random process and the optimum processor takes the form of a time-varying
filter. For processing sampled data the filter is a matrix operator whose elements are
determined from the known or assumed parameters of the underlying random processes
associated with the signal and the ongoing EEG. The filter operator is selected to
minimize the mean square error of the estimate and is given by the following expression

where & is the cross covariance matrix of the signal and data and K,,. is the covari-

anee matrix of the measured data.
The matrix H can be thought of as an operator that projects the data vector from

the high dimensionality measurement space into the low dimensionality signal space.
The dimensionality of the signal s, !- is determined by the number of significant eigen-
vectors of the operator and thki in turn depends upon the covariance matrices them-
selves. To a first approximatior the more that is known about a signal the lower will
be the dimensionality of the signal space. For example if the signal were deterministic
except for amplitude the signal space would be one dimensional and only the signal
wavefocm would appear at the filter output regardless of the input.

The matrix operator filter design can be carried out for EP waveforms in the fol-
lowing manner. From an ensemble of measured waveforms the latency corrected aver-
age (LCA) is computed. From the output of the LCA procedure the individual com-

.4 ponents in the waveform are identified, their shapes determined and the means and
standard deviations of their latency variations estimated. From this information the
covariance matrix of the signal can be determined and the covariance matrix of the
measured data is calculated directly from the data set. From these two matrices the
filter matrix is computed.

Filters have been designed and tested using both simulated and measured data.
PrFtgure 1 shows an example of filtering simulated data. Figure la is the signal, Figure

lb shows samples of signal plus noise and Figure lc shows the filtered versions of Fig
ore lb. A filter was designed for EP waveforms obtained using a checkerboard visual
stimulus. Figure 2 shows individual measured EP waveforms (dashed) and filtered ver-
sions of the waveforms (solid). The very qubstantial noise reduction performance of
this filter is readily evident in i,,res a ad 2. The performance of this type of filter

:..::.:- .:' .: ; . . - : : - .: " - • . ; . .. . - ._ , . ,. .
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(a) (b) (C)

Figure 1. Time-varying filter performnce. (a) Underlying signal.
(b) Signal plus noise. (c) Filtered vaveforu. All tmefomus
re. 22 i urat. i on
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* for quantitative measurements on single EP waveforms is being evaluated.

Effects of Noise on Latency Meaurem ents of EP Components. Whenever repeti-
* tive measurements of evoked potentials are made it is aoid that there are significant

variations in the amplitudes and latencies in the individual peaks or components that
are present. This is a well known phenomenon and has frequently been discussed in the
literature. Figure 3 shows a histogram of the latencies of peaks identified in 100 visual
evoked potentials elicited by a Hlash stimulus for a subject with eyes closed. It is seen
from the figure that the measured latencies are distributed around a mean value in a

* manner suggesting that a certain amount of randomness is associated with their
occurrence.

There are two possible causes for the randomness associated with measurements of
this kind. First, the measurements of EP's are made in the presence of the ongoing
EEG which may significantly affect the shape of the observed waveform and alter both
latency and amplitude estimates. Second the EP waveform itself may be varying from

* stimulus to stimulus. It is important for several reasons to be able to differentiate
between these two effects. One reason is to better define the characteristics and param-
eters associated with the single EP. Another is to provide quantitative information for
the design of improved signal processors for analysis and classification of single EPs. It
is this latter reason that led to the research described here which is aimed at establish-

* ing the degree to which the presence of the ongoing EEG considered as an additive
* noise component can affect the latency measurements of components in the EP.

This problem was attacked theoretically and the resulting analytical expressions
- then checked empirically. The analysis was carried out as follows. It was assumed that

an EP waveform could be approximated in the vicinity of a peak by a second order
polynomial. The coefficients of the polynomial were determined by means of a least

* squares fitting of 5 points in the vicinity of a peak. The errors in estimating these
* parameters in the presence of noise were also determnined theoretically. Once the

parameters are known the peak location is readily found. The variance in the peak
location estimate due to the presence of noise can be determined from the errors that

* occur in the parameter estimates. A simulation was performed to verify the theoretical
* results. Noise was added to a known waveshape and the peak location determined.

This was repeated many times and the variance of the peak location determined. Tests
were carried out utilizing both white noise and noise having the same covariance as
.measured EEG signals. It was found that white noise gave a slightly higher variance in
thie component latency than did the EEG noise. However, the check in both cases
between the experimentally determined values and the theoretical values was quite
close.

Latency variation or jitter due to noise depends primarily upon two parameters:
the signal-to-noise-ratio and the radius of curvature of the peak. Narrow peaks and
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high signal-to-noise ratios reduce the latency jitter produced by additive nQise. The fol-
lowing expression for the standard deviation of latency jitter was obtained.

0.86RW,

where R is the radius of curvature of the peak, W. is the noise bandwidth and SNR is
* the signal-to-noise ratio computed as the square of the peak signal amplitude divided

by the variance of the noise. This equation is valid for any sampling frequency equal to
or greater than 2W.. A convenient pulse shape for computation purposes is a single
lobe of a cosine wave. If the duration of this pulse is T seconds, then the radius of cur-

vature is (T)2. To illustrate the nature of the results consider a case in which an EP

component has a duration of 30 ms, the noise bandwidth is 25 lz and the SNR is d.
The standard deviation of the latency jitter for this case would be 2 ms. Values deter-
mined from the LCA are typically 7 to 10 ms for measured EH's having similar parame-
ters. This indicates that the variations in latency must be almost entirely due to varia-
tions in the latency of the components themselves and not due to the effects of additive
noise. These results add considerable confidence to the design procedures for the
improved signal processing techniques that make use of the random variations in signal
latency.
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